Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Funct Biomater ; 15(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38667553

ABSTRACT

Re-tightening the loosened dental implant abutment screw is an accepted procedure, however the evidence that such screw will hold sufficiently is weak. The purpose of this study was material analysis of lost dental implant abutment screws made of the TiAlV alloy from various manufacturers, which became lost due to unscrewing or damaged when checking if unscrewed; undamaged screws could be safely re-tightened. Among 13 failed screws retrieved from 10 cases, 10 screws were removed due to untightening and 3 were broken but without mechanical damage at the threads. Advanced corrosion was found on nine screws after 2 years of working time on all surfaces, also not mechanically loaded. Sediments observed especially in the thread area did not affect the corrosion process because of no pit densification around sediments. Pitting corrosion visible in all long-used screws raises the question of whether the screws should be replaced after a certain period during service, even if they are well-tightened. This requires further research on the influence of the degree of corrosion on the loss of the load-bearing ability of the screw.

2.
Materials (Basel) ; 17(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38591629

ABSTRACT

While functioning in the oral cavity, denture soft linings (SL) are exposed to contact with the microbiota. Dentures can offer perfect conditions for the multiplication of pathogenic yeast-like fungi, resulting in rapid colonisation of the surface of the materials used. In vitro experiments have also shown that yeast may penetrate SL. This may lead to changes in their initially beneficial functional properties. The aim of this work was to investigate the effect of three months of exposure to a Candida albicans suspension on the mechanical properties of SL material and its bond strength to the denture base polymer, and to additionally verify previous reports of penetration using a different methodology. Specimens of the SL material used were incubated for 30, 60 and 90 days in a suspension of Candida albicans strain (ATCC 10231). Their shore A hardness, tensile strength, and bond strength to acrylic resin were tested. The colonization of the surface and penetration on fractured specimens were analysed with scanning electron and inverted fluorescence microscopes. Exposure to yeast did not affect the mechanical properties. The surfaces of the samples were colonised, especially in crystallized structures of the medium; however, the penetration of hyphae and blastospores into the material was not observed.

3.
Materials (Basel) ; 17(4)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38399153

ABSTRACT

Colonization of temporary denture soft linings and underlying tissues by yeast-like fungi is an important clinical problem due to the negative influence on the process of prosthetic treatment. Typical hygienic procedures are often insufficient to prevent fungal infections, so in this study, an antimicrobial filler (silver sodium hydrogen zirconium phosphate) was introduced into acrylic soft liner at concentrations of 1, 2, 4, 6, 8 and 10% (w/w). The effect of this modification on antifungal properties against Candida albicans, cytotoxicity, Shore A hardness, tensile strength and tensile bond strength, sorption and solubility was investigated, considering the recommended 30-day period of temporary soft lining use. The most favorable compilation of properties was obtained at a 1 to 6% filler content, for which nearly a total reduction in Candida albicans was registered even after 30 days of sample storing. The tensile and bond strength of these composites was at the desired and stable level and did not differ from the results for the control material. Hardness increased with the increasing concentration in filler but were within the range typical for soft lining materials and their changes during the experiment were similar to the control material. The materials were not cytotoxic and sorption and solubility levels were stable.

4.
Materials (Basel) ; 16(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38068230

ABSTRACT

The objective of this study was to formulate dip coatings, incorporating casein, NaOH, and nanocrystalline hydroxyapatite (nanoHAp), with self-healing properties for application on ZnMg3.2 wt.% alloy in the field of biomedical applications. This study hypothesizes that the self-healing mechanism within the layer will impede substrate degradation by progressively filling defects where chlorides from simulated body fluids intervene. Furthermore, it aims to mitigate potential damage effects during the implantation process by the layer's self-healing capabilities. The research focused on the dip-coating process parameters and chemical composition of baths for producing casein coatings on Zn alloy surfaces. This study investigated the impact of casein and NaOH concentration, along with the immersion time of ZnMg3.2 wt.% samples in the coating bath, on the self-healing capability of the coating under simulated human body fluid conditions (Ringer's solution, temperature: 37 °C). Effective technology was developed by selecting specific chemical compositions and immersion times in the coating bath, enhancing the self-healing progress against coating damage in Ringer's solution at 37 °C. The most significant self-healing effect was observed when the ZnMg3.2 wt.% substrate underwent a 1 h immersion in a coating bath containing 2 g of casein, 4 g of NaOH, and 0.1 g of nanoHAp powder. Electrochemical tests were instrumental in determining the optimal casein concentration and immersion time of the Zn alloy in the coating bath.

5.
Materials (Basel) ; 16(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37109777

ABSTRACT

This paper presents the results of research on a newly developed surface layer made by laser remelting the working surface of the Cu-ETP (CW004A, Electrolytic Tough Pitch) copper section insulator guide with Cr-Al powder. For the investigation, a fibre laser was used with relatively high power, reaching 4 kW, so as to ensure a high gradient of cooling rate for microstructure refinement. The microstructure of the transverse fracture of the layer (SEM) and the distribution of elements in the microareas (EDS) were investigated. The test results showed that chromium does not dissolve in the Cu matrix, and its precipitates take the shape of dendrites. The hardness and thickness of the surface layers as well as the friction coefficient and the influence of the Cr-Al powder feeding speed on them were examined. For the distance from the surface to 0.45 mm, the hardness of the produced coatings is above 100 HV0.3, while the friction coefficient of the produced coatings is in the range of 0.6-0.95. More sophisticated investigation results concern the d-spacing lattice parameters of the crystallographic structure of the obtained Cu phase reaching the range between 3.613-3.624 Å.

6.
Materials (Basel) ; 16(5)2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36903014

ABSTRACT

Zinc oxide layers on soda-lime glass substrates were fabricated using the sol-gel method and the dip-coating technique. Zinc acetate dihydrate was applied as the precursor, while diethanolamine as the stabilizing agent. This study aimed to determine what effect has the duration of the sol aging process on the properties of fabricated ZnO films. Investigations were carried out with the sol that was aged during the period from 2 to 64 days. The sol was studied using the dynamic light scattering method to determine its distribution of molecule size. The properties of ZnO layers were studied using the following methods: scanning electron microscopy, atomic force microscopy, transmission and reflection spectroscopy in the UV-Vis range, and the goniometric method for determination of the water contact angle. Furthermore, photocatalytic properties of ZnO layers were studied by the observation and quantification of the methylene blue dye degradation in an aqueous solution under UV illumination. Our studies showed that ZnO layers have grain structure, and their physical-chemical properties depend on the duration of aging. The strongest photocatalytic activity was observed for layers produced from the sol that was aged over 30 days. These layers have also the greatest porosity (37.1%) and the largest water contact angle (68.53°). Our studies have also shown that there are two absorption bands in studied ZnO layers, and values of optical energy band gaps determined from positions of maxima in reflectance characteristics are equal to those determined using the Tauc method. Optical energy band gaps of the ZnO layer fabricated from the sol aged over 30 days are EgI = 4.485 eV and EgII = 3.300 eV for the first and second bands, respectively. This layer also showed the highest photocatalytic activity, causing the pollution to degrade 79.5% after 120 min of UV irradiation. We believe that ZnO layers presented here, thanks to their attractive photocatalytic properties, may find application in environmental protection for the degradation of organic pollutants.

7.
Materials (Basel) ; 16(5)2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36903032

ABSTRACT

The magnesium-based alloys produced by mechanical alloying (MA) are characterized by specific porosity, fine-grained structure, and isotropic properties. In addition, alloys containing magnesium, zinc, calcium, and the noble element gold are biocompatible, so they can be used for biomedical implants. The paper assesses selected mechanical properties and the structure of the Mg63Zn30Ca4Au3 as a potential biodegradable biomaterial. The alloy was produced by mechanical synthesis with a milling time of 13 h, and sintered via spark-plasma sintering (SPS) carried out at a temperature of 350 °C and a compaction pressure of 50 MPa, with a holding time of 4 min and a heating rate of 50 °C∙min-1 to 300 °C and 25 °C∙min-1 from 300 to 350 °C. The article presents the results of the X-ray diffraction (XRD) method, density, scanning electron microscopy (SEM), particle size distributions, and Vickers microhardness and electrochemical properties via electrochemical impedance spectroscopy (EIS) and potentiodynamic immersion testing. The obtained results reveal the compressive strength of 216 MPa and Young's modulus of 2530 MPa. The structure comprises MgZn2 and Mg3Au phases formed during the mechanical synthesis, and Mg7Zn3 that has been formed during the sintering process. Although MgZn2 and Mg7Zn3 improve the corrosion resistance of the Mg-based alloys, it has been revealed that the double layer formed because of contact with the Ringer's solution is not an effective barrier; hence, more data and optimization are necessary.

8.
Materials (Basel) ; 15(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35683140

ABSTRACT

Yeast-like fungi such as Candida albicans (C. albicans) are the primary pathogenic microorganism in the oral cavity of denture wearers. The research available so far, conducted according to a protocol based on the exposure of specimens to a C. albicans suspension and their cutting with water cooling, shows that hard polymethyl methacrylate (PMMA) prosthetic materials are not only surface colonized, but also penetrated by microorganisms in a short time. This justifies the hypothesis that exposure to a suspension of the C. albicans strain causes the changes in mechanical properties due to surface colonization and/or penetration of the samples. In the current study, the chosen mechanical properties (flexural strength, flexural modulus, tensile strength, impact strength, ball indentation hardness, and surface Vickers hardness at 300 g load) of the PMMA denture base material Vertex RS (Vertex-Dental, The Netherlands) exposed for 30, 60, and 90 days to a suspension of C. albicans were investigated. The potential penetration of yeast was examined on the fractured surfaces (interior of specimens) to eliminate the risk of the contamination of samples during cutting. There was no influence on the flexural strength, flexural modulus, tensile strength, impact strength, or ball indentation hardness, but a significant decrease in surface hardness was registered. Microscopic observations did not confirm the penetration of C. albicans. On the surface, blastospores and pseudohyphae were observed in crystallized structures and in traces after grinding, which indicates that in clinical conditions, it is not penetration but the deterioration of surface quality, which may lead to the formation of microareas that are difficult to disinfect, causing rapid recolonization.

9.
Int J Mol Sci ; 23(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35563084

ABSTRACT

The specific combinations of materials and dopants presented in this work have not been previously described. The main goal of the presented work was to prepare and compare the different properties of newly developed composite materials manufactured by sintering. The synthetic- (SHAP) or natural- (NHAP) hydroxyapatite serves as a matrix and was doped with: (i) organic: multiwalled carbon nanotubes (MWCNT), fullerenes C60, (ii) inorganic: Cu nanowires. Research undertaken was aimed at seeking novel candidates for bone replacement biomaterials based on hydroxyapatite-the main inorganic component of bone, because bone reconstructive surgery is currently mostly carried out with the use of autografts; titanium or other non-hydroxyapatite -based materials. The physicomechanical properties of the developed biomaterials were tested by Scanning Electron Microscopy (SEM), Dielectric Spectroscopy (BSD), Nuclear Magnetic Resonance (NMR), and Differential Scanning Calorimetry (DSC), as well as microhardness using Vickers method. The results showed that despite obtaining porous sinters. The highest microhardness was achieved for composite materials based on NHAP. Based on NMR spectroscopy, residue organic substances could be observed in NHAP composites, probably due to the organic structures that make up the tooth. Microbiology investigations showed that the selected samples exhibit bacteriostatic properties against Gram-positive reference bacterial strain S. epidermidis (ATCC 12228); however, the property was much less pronounced against Gram-negative reference strain E. coli (ATCC 25922). Both NHAP and SHAP, as well as their doped derivates, displayed in good general compatibility, with the exception of Cu-nanowire doped derivates.


Subject(s)
Durapatite , Nanotubes, Carbon , Biocompatible Materials/pharmacology , Bone and Bones , Durapatite/chemistry , Escherichia coli , Nanotubes, Carbon/chemistry
10.
Materials (Basel) ; 15(5)2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35268963

ABSTRACT

This research aims to characterize and examine the microstructure and mechanical properties of the newly developed M789 steel, applied in additive manufacturing. The data presented herein will bring about a broader understanding of the processing−microstructure−property−performance relationships in this material based on its chemical composition and heat treatment. Samples were printed using the laser powder bed fusion (LPBF) process and then the solution was annealed at 1000 °C for 1 h, followed by aging at 500 °C for soaking times of 3, 6 and 9 h. The AM components showed a relative density of 99.1%, which arose from processing with the following parameters: laser power of 200 W, laser speed of 340 mm/s, and hatch distance of 120 µm. Optical and electron microscopy observations revealed microstructural defects, typical for LPBF processes, like voids appearing between the melted pools of different sizes with round or creviced geometries, nonmelted powder particle formation inside such cavities, and small spherical porosity that was preferentially located between the molten pools. In addition, in heat-treated conditions, AM maraging steel has combined oxide inclusions of Ti and Al (TiO2:Al2O3) that reside along the grain boundaries and secondary porosities; these may act as preferential zones for crack initiation and may increase the brittleness of the AM steel under aged conditions. Consequently, the elongation of the AM alloy was low (<3%) for both annealed and aged solution conditions. The tensile strength of AM M789 increased from 968 MPa (solution annealed) to 1500−1600 MPa after the aging process due to precipitation within the intermetallic η-phase. A tensile strength and yield point of 1607 ± 26 and 1617 ± 45 MPa were obtained, respectively, after a full heat treatment at 500 °C/6 h. The results show that 3 h aging of solution annealed AM M789 steel achieves satisfactory material properties in industrial practice. Extending the aging time of printed parts to 6 h yields slightly improved properties but may not be worth the effort, while long-term aging (9 h) was shown to even reduce quality.

11.
Microsc Microanal ; : 1-8, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35105419

ABSTRACT

Advanced High-Strength Steels (AHSSs) are one of the most rapidly developing group of Fe-based metallic materials. Their excellent combination of high strength, ductility and formability is due to their complex microstructure and strain-induced martensitic transformation of metastable retained austenite (RA), which favors extra ductility of the sheet steels. A deformation temperature is one of the most important factors affecting the phase transformation behavior in these Fe­C­Mn­Al­Si systems. Therefore, the present study aimed at understanding the temperature-dependent phase transformations and structural phenomena in an advanced medium-Mn­Al-alloyed steel. The 3Mn steel was thermomechanically processed and subjected to tensile testing in a temperature range from 20°C to 200°C. The different extent of the strain-induced martensitic transformation and some softening phenomena of bainitic ferrite matrix were revealed using transmission electron microscopy and electron backscatter diffraction techniques. It was found that the thermal stability of RA is strongly dependent on the deformation temperature. Moreover, the dynamic recovery and carbide precipitation play a key role when the deformation temperature is increased to 140°C and higher temperatures.

12.
Materials (Basel) ; 14(23)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34885286

ABSTRACT

Crack-free binary SiOx:TiOy composite films with the refractive index of ~1.94 at wavelength 632.8 nm were fabricated on soda-lime glass substrates, using the sol-gel method and dip-coating technique. With the use of transmission spectrophotometry and Tauc method, the energy of the optical band gap of 3.6 eV and 4.0 eV were determined for indirect and direct optical allowed transitions, respectively. Using the reflectance spectrophotometry method, optical homogeneity of SiOx:TiOy composite films was confirmed. The complex refractive index determined by spectroscopic ellipsometry confirmed good transmission properties of the developed SiOx:TiOy films in the Vis-NIR spectral range. The surface morphology of the SiOx:TiOy films by atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods demonstrated their high smoothness, with the root mean square roughness at the level of ~0.15 nm. Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to investigate the chemical properties of the SiOx:TiOy material. The developed binary composite films SiOx:TiOy demonstrate good waveguide properties, for which optical losses of 1.1 dB/cm and 2.7 dB/cm were determined, for fundamental TM0 and TE0 modes, respectively.

13.
Materials (Basel) ; 14(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805196

ABSTRACT

In the present study, two different cermet coatings, WC-CrC-Ni and Cr3C2-NiCr, manufactured by the high-velocity oxy-fuel (HVOF) method were studied. They are labeled as follows: WC-CrC-Ni coating-WC and Cr3C2-NiCr coating-CrC. These coatings were deposited onto a magnesium alloy (AZ31) substrate. The goal of the study was to compare these two types of cermet coating, which were investigated in terms of microstructure features and selected mechanical properties, such as hardness, instrumented indentation, fracture toughness, and wear resistance. The results reveal that the WC content influenced the hardness and Young's modulus. The most noticeable effect of WC addition was observed for the wear resistance. WC coatings had a wear intensity value that was almost two times lower, equal to 6.5·10-6 mm3/N·m, whereas for CrC ones it was equal to 12.6·10-6 mm3/N·m. On the other hand, the WC coating exhibited a lower value of fracture toughness.

14.
Materials (Basel) ; 15(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-35009187

ABSTRACT

In this paper, three commercial cermet powders, WC-Co-Cr, WC-Co and WC-Cr3C2-Ni, were sprayed by the High Velocity Oxy Fuel (HVOF) method onto magnesium alloy AZ31 substrate. The coatings were investigated in terms of their microstructure, phase analysis and residual stress. The manufactured coatings were analyzed extensively using optical microscopy (OM), X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM). Based on microstructure studies, it was noted that the coatings show satisfactory homogeneity. XRD analysis shows that in WC-Co, WC-Co-Cr and WC-Cr3C2-Ni coatings, main peaks are related to WC. Weaker peaks such as W2C, Co0.9W0.1, Co and W for WC-Co and W2C, Cr3C2 and Cr7C3 for WC-Cr3C2-Ni also occur. In all cermet coatings, linear stress showed compressive nature. In WC-Co and WC-Cr3C2-Ni, residual stress had a similar value, while in WC-Co-Cr, linear stress was lower. It was also proved that spraying onto magnesium substrate causes shear stress in the WC phase, most likely due to the low elastic modulus of magnesium alloy substrate.

15.
Materials (Basel) ; 13(12)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570948

ABSTRACT

In present work the Cr3C2-NiCr coating was deposited on magnesium alloy substrate with high velocity oxygen fuel (HVOF) spraying. The microstructure of the samples has been characterized by means of electron microscopy, SEM and phase composition analysis carried out. The porosity of coatings has been also estimated. Finally, tests of selected mechanical properties, such as instrumented indentation, abrasive erosion have been performed. The results of the investigations confirmed that dense, homogeneous and well-adhered Cr3C2-NiCr cermet coating is possible to obtain onto the magnesium AZ31 alloy substrate. Moreover, the coatings exhibit high resistance to erosion.

16.
Materials (Basel) ; 13(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155713

ABSTRACT

The thermal conditions in the molten pool during the laser surface melting of ductile cast iron EN-GJS-700-2 were estimated by using infrared thermography and thermocouple measurements. The thermal data were then correlated with the microstructure of the melted zone. Additionally, the thermodynamic calculations of a Fe-C-Si alloy system were performed to predict the solidification path of the melted zone. It was found that increasing the cooling rate during solidification of the refined ledeburite eutectic but also suppressed the martensitic transformation. A continuous network of plate-like secondary cementite precipitates and nanometric spherical precipitates of tertiary cementite were observed in regions of primary and eutectic austenite. The solidification of the melted zone terminated with the Liquid → γ-Fe + Fe3C + Fe8Si2C reaction. The hardness of the melted zone was affected by both the fraction of the retained austenite and the morphology of the ledeburite eutectic.

17.
Materials (Basel) ; 13(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155812

ABSTRACT

The work examines the effect of rhenium addition on the structure and properties of Cu-2Ni-1Si alloys. The aim of this work was to answer the question of how the addition of rhenium will affect the strengthening mechanisms of rhenium-modified, saturated, plastically deformed and aged Cu-2Ni-1Si alloys. How will this affect the crystallization process? What effect will it have on the properties? Scanning electron microscopy (SEM) and analysis of chemical composition in microareas (energy-dispersive X-ray spectroscopy, EDS), light microscopy, measurements of microhardness and conductivity of the alloys were used for the investigations. Research on chemical and phase composition were carried out with application of transmission electron microscopy (TEM), and scanning transmission electron microscopy (STEM). Modification with rhenium has caused an increase in hardness as a result of precipitation of small phases with rhenium. As the effect of supersaturation, cold plastic treatment as well as aging small phases with rhenium with a size of 200 nm to 600 nm causes both reinforcement of the alloy and makes recrystallization impossible. Re-addition also influences the stabilization of the structure.

18.
Materials (Basel) ; 13(2)2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31952286

ABSTRACT

This paper presents the effects of laser treatment (fiber laser YLS-4000) on the microstructure and selected mechanical properties of the surface layer of AlMg (AlMg9) foundry alloy obtained by alloying with boron carbide (B4C). The correlation between laser alloying process parameters and selected properties of the formed layer was discussed. The studies were supported by microstructural analysis of the remelted zone (RZ), heat affected zone (HAZ), undissolved carbide particles, substrate material, and precipitates formed during rapid solidification. Metallographic investigations of the laser-treated layer were performed using optical microscopy and scanning electron microscopy (SEM). The elemental composition and a detailed analysis of chemical composition in micro-areas were carried out using energy dispersive X-ray spectroscopy (EDS). The remelting thickness, heat-affected zone (HAZ), and amount of base material in surface layers were determined. Microhardness tests were performed on transverse cross-sections of the remelted zone to obtain the hardness profiles in the base material (BM), remelted zone (RZ), and heat affected zone (HAZ). The hardness, roughness, and wear resistance measurements showed that the highest tribological properties of the obtained surface layer were achieved using 0.5 Bar protective gas (Ar) during alloying with B4C powder.

19.
Materials (Basel) ; 13(24)2020 Dec 20.
Article in English | MEDLINE | ID: mdl-33419322

ABSTRACT

The kinetics of ferritic transformation and the corresponding microstructural evolution in 0.17C-3.1Mn-1.6Al-0.04Nb-0.22Mo-0.22Si medium-Mn steel during isothermal annealing was investigated in dilatometric studies. The material was subjected to thermal and thermo-mechanical treatments aimed at obtaining, by the austenite → ferrite transformation, a sufficient fraction of ferrite to stabilize the retained austenite by C and eventual Mn partitioning. The samples were isothermally held for 5 h in a temperature range from 600 to 750 °C to simulate simplified temperature conditions of an industrial coiling process following hot rolling. Some of the samples were plastically deformed at a temperature of 900 °C before isothermal holding in order to study the effect of hot deformation on the kinetics of phase transformations. After the dilatometric investigations the material was subjected to light and scanning electron microscopy to reveal relationships between the holding temperature, deformation and microstructure evolution. Hardness tests were performed to assess the mechanical behavior. A significant effect of manganese in slowing down diffusional transformations during the cooling of steel was found. The influence of austenite deformation on the kinetics of austenite to ferrite transformation was noted. The plastically deformed samples showed an accelerated start of ferritic transformation and the extension of its range. During dilatometric tests, low-range dynamic ferritic transformation was recorded, which was also confirmed by the microscopic tests.

20.
Materials (Basel) ; 12(24)2019 Dec 11.
Article in English | MEDLINE | ID: mdl-31835665

ABSTRACT

Colonization of polymeric dental prosthetic materials by yeast-like fungi and the association of these microorganisms with complications occurring during prosthetic treatment are important clinical problems. In previously presented research, submicron inorganic particles of silver sodium hydrogen zirconium phosphate (S-P) were introduced into poly(methyl methacrylate) (PMMA) denture base material which allowed for obtaining the antimicrobial effect during a 90 day experiment. The aim of the present study was to investigate the flexural strength, impact strength, hardness, wear resistance, sorption, and solubility during three months of storage in distilled water. With increasing S-P concentration after 2 days of conditioning in distilled water, reduced values of flexural strength (107-72 MPa), impact strength (18.4-5.5 MPa) as well as enhanced solubility (0.95-1.49 µg/mm3) were registered, but they were at acceptable levels, and the sorption was stable. Favorable changes included increased hardness (198-238 MPa), flexural modulus (2.9-3.3 GPa), and decreased volume loss during wear test (2.9-0.2 mm3). The percentage changes of the analyzed properties during the 90 days of storage in distilled water were similar for all materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...